How do you evaluate the integral int (2x-3)/((x-1)(x+4))? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Andrea S. Mar 8, 2018 int (2x-3)/((x-1)(x+4)) dx = -1/5 ln abs (x-1)+11/5 ln abs (x+4) +C Explanation: Use partial fractions decomposition: (2x-3)/((x-1)(x+4)) = A/(x-1)+B/(x+4) 2x-3 = A(x+4)+B(x-1) 2x-3 = (A+B)x +4A-B {(A+B=2),(4A-B=-3):} {(5A=-1),(B=-A+2):} {(A=-1/5),(B=11/5):} (2x-3)/((x-1)(x+4)) = -1/(5(x-1))+11/(5(x+4)) int (2x-3)/((x-1)(x+4)) dx = -1/5 int dx/(x-1)+11/5 int dx/(x+4) int (2x-3)/((x-1)(x+4)) dx = -1/5 ln abs (x-1)+11/5 ln abs (x+4) +C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1576 views around the world You can reuse this answer Creative Commons License