How do you evaluate the integral int (2x-3)/((x-1)(x+4))?

1 Answer
Mar 8, 2018

int (2x-3)/((x-1)(x+4)) dx = -1/5 ln abs (x-1)+11/5 ln abs (x+4) +C

Explanation:

Use partial fractions decomposition:

(2x-3)/((x-1)(x+4)) = A/(x-1)+B/(x+4)

2x-3 = A(x+4)+B(x-1)

2x-3 = (A+B)x +4A-B

{(A+B=2),(4A-B=-3):}

{(5A=-1),(B=-A+2):}

{(A=-1/5),(B=11/5):}

(2x-3)/((x-1)(x+4)) = -1/(5(x-1))+11/(5(x+4))

int (2x-3)/((x-1)(x+4)) dx = -1/5 int dx/(x-1)+11/5 int dx/(x+4)

int (2x-3)/((x-1)(x+4)) dx = -1/5 ln abs (x-1)+11/5 ln abs (x+4) +C