∫√9−x2dx=?
Substitute x=3⋅sinθ
dx=3⋅cosθ⋅dθ ; θ=arcsin(x3)
x2=9⋅sin2θ
∫√9−x2dx=∫√9−9⋅sin2θ⋅3⋅cosθ⋅dθ
∫√9−x2dx=∫√9(1−sin2θ)⋅3⋅cosθ⋅dθ
So ;1−sin2θ=cos2θ
∫√9−x2dx=∫3√cos2θ⋅3⋅cosθ⋅dθ
∫√9−x2dx=9∫cos2θ⋅dθ
Now use the reduction formula...
∫cosnθdθ=n−1n∫cosn−2θ⋅dθ+cosn−1θ⋅sinθn
use n=2
∫cos2θdθ=2−12∫cos2−2θ⋅dθ+cos2−1θ⋅sinθ2
∫cos2θ⋅dθ=12∫dθ+12(cosθ⋅sinθ)
∫dθ=θ ; θ=arcsin(x3)
So ;x=3⋅sinθ; ; sinθ=x3
cosθ=√1−sin2θ
cosθ=√1−x29
∫√9−x2dx=9[12⋅arcsin(x3)+12(√1−x29⋅x3)]
∫√9−x2dx=9⋅arcsin(x3)2+12(√1−x29⋅3x)
∫√9−x2dx=9arcsin(x3)2+12(√9−x29⋅3x)
∫√9−x2dx=9arcsin(x3)2+12(√9−x2⋅x)
The problem has solved...
∫√9−x2dx=9arcsin(x3)+x⋅√9−x22+C