How do you integrate 9x2 by trigonometric substitution?

1 Answer
Aug 3, 2016

9x2dx=?

Substitute x=3sinθ

dx=3cosθdθ ; θ=arcsin(x3)

x2=9sin2θ

9x2dx=99sin2θ3cosθdθ

9x2dx=9(1sin2θ)3cosθdθ

So ;1sin2θ=cos2θ

9x2dx=3cos2θ3cosθdθ

9x2dx=9cos2θdθ

Now use the reduction formula...
cosnθdθ=n1ncosn2θdθ+cosn1θsinθn

use n=2

cos2θdθ=212cos22θdθ+cos21θsinθ2

cos2θdθ=12dθ+12(cosθsinθ)

dθ=θ ; θ=arcsin(x3)

So ;x=3sinθ; ; sinθ=x3

cosθ=1sin2θ

cosθ=1x29

9x2dx=9[12arcsin(x3)+12(1x29x3)]

9x2dx=9arcsin(x3)2+12(1x293x)

9x2dx=9arcsin(x3)2+12(9x293x)

9x2dx=9arcsin(x3)2+12(9x2x)

The problem has solved...

9x2dx=9arcsin(x3)+x9x22+C