How do you find the integral of √9−x2dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer dani83 Aug 17, 2015 ∫√9−x2dx=92(sin−1(x3)+x3√1−(x3)2)+C Explanation: sin2A+cos2A=1 cos2A=2cos2A−1 sin2A=2sinAcosA Use substitution. x=3sint ∫√9−x2dx=∫3√1−sin2t×3costdt=9∫cos2tdt 9∫cos2tdx=92∫(1+cos2t)dt=92(t+12sin2t)+C In terms of x: ∫√9−x2dx=92(sin−1(x3)+x3√1−(x3)2)+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 26545 views around the world You can reuse this answer Creative Commons License