How do you find the integral of 9x2dx?

1 Answer
Aug 17, 2015

9x2dx=92(sin1(x3)+x31(x3)2)+C

Explanation:

sin2A+cos2A=1
cos2A=2cos2A1
sin2A=2sinAcosA

Use substitution.
x=3sint

9x2dx=31sin2t×3costdt=9cos2tdt

9cos2tdx=92(1+cos2t)dt=92(t+12sin2t)+C

In terms of x:
9x2dx=92(sin1(x3)+x31(x3)2)+C