How do you integrate int 1/sqrt(2-5x^2) by trigonometric substitution?
1 Answer
Oct 18, 2017
int \ 1/sqrt(2-5x^2) \ dx = 1/sqrt(5) \ arcsin (sqrt(5/2)x) + C
Explanation:
We seek:
I = int \ 1/sqrt(2-5x^2) \ dx
Which, we can write as:
I = int \ 1/sqrt(2(1-5/2x^2)) \ dx
\ \ = int \ 1/(sqrt(2)sqrt(1-(sqrt(5)/sqrt(2)x)^2)) \ dx
\ \ = 1/sqrt(2) \ int \ 1/(sqrt(1-(sqrt(5/2)x)^2)) \ dx
We can now perform a substitution, Let:
u = sqrt(5/2)x => (du)/dx = sqrt(5/2)
:. sqrt(2/5) (du)/dx = 1
Substituting into the integral, we get:
I = 1/sqrt(2) \ int \ 1/(sqrt(1-u^2)) \ (sqrt(2/5)) \ du
\ \ = 1/sqrt(5) \ int \ 1/(sqrt(1-u^2)) \ du
Which is a standard integral, so we have:
I = 1/sqrt(5) \ arcsin u + C
Restoring the substitution:
I = 1/sqrt(5) \ arcsin (sqrt(5/2)x) + C