How do you find the integral of int (4x+3)/sqrt(1-x^2)?

1 Answer
Jan 3, 2017

The answer is =-4sqrt(1-x^2)+3arcsinx+C

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C (n!=-1)

sin^2x+cos^2x=1

Rewrite the integral (we apply linearity)

int((4x+3)dx)/sqrt(1-x^2)=int(4xdx)/sqrt(1-x^2)+int(3dx)/sqrt(1-x^2)

=4int(xdx)/sqrt(1-x^2)+3intdx/sqrt(1-x^2)

Let u=1-x^2, =>, du=-2xdx

int(xdx)/sqrt(1-x^2)=-1/2int(du)/sqrtu

=-1/2sqrtu/(1/2)=-sqrtu=-sqrt(1-x^2)

Let x=sin theta, =>, dx=costheta(d theta)

sqrt(1-x^2)=sqrt(1-sin^2theta)=sqrt (cos^2theta)=costheta

int(dx)/sqrt(1-x^2)=int(costheta d theta)/costheta=intd theta=theta

=arcsinx

Putting it all together

int((4x+3)dx)/sqrt(1-x^2)=-4sqrt(1-x^2)+3arcsinx+C