We need
intx^ndx=x^(n+1)/(n+1)+C (n!=-1)
sin^2x+cos^2x=1
Rewrite the integral (we apply linearity)
int((4x+3)dx)/sqrt(1-x^2)=int(4xdx)/sqrt(1-x^2)+int(3dx)/sqrt(1-x^2)
=4int(xdx)/sqrt(1-x^2)+3intdx/sqrt(1-x^2)
Let u=1-x^2, =>, du=-2xdx
int(xdx)/sqrt(1-x^2)=-1/2int(du)/sqrtu
=-1/2sqrtu/(1/2)=-sqrtu=-sqrt(1-x^2)
Let x=sin theta, =>, dx=costheta(d theta)
sqrt(1-x^2)=sqrt(1-sin^2theta)=sqrt (cos^2theta)=costheta
int(dx)/sqrt(1-x^2)=int(costheta d theta)/costheta=intd theta=theta
=arcsinx
Putting it all together
int((4x+3)dx)/sqrt(1-x^2)=-4sqrt(1-x^2)+3arcsinx+C