How do I evaluate #int cos^5(x) sin^4(x) dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer maganbhai P. Apr 20, 2018 #I=sin^5x/5-(2sin^7x)/7+sin^9x/9+c# Explanation: Here, #I=intcos^5xsin^4xdx# #=intsin^4x(cos^2x)^2cosxdx# #=intsin^4x(1-sin^2x)^2cosxdx# Let, #sinx=t=>cosxdx=dt# So, #I=intt^4(1-t^2)^2dt# #=int(t^4(1-2t^2+t^4)dt# #=int(t^4-2t^6+t^8)dt# #=t^5/5-2(t^7/7)+t^9/9+c..towhere,t=sinx# #=sin^5x/5-(2sin^7x)/7+sin^9x/9+c# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 15579 views around the world You can reuse this answer Creative Commons License