How do you integrate int dx/(5-4x-x^2)^(5/2) using trig substitutions?

1 Answer
May 1, 2018

I=((x+2)(19-8x-2x^2))/(243sqrt(5-4x-x^2))+C.

Explanation:

Let us note that,

5-4x-x^2=9-(4+4x+x^2)=3^2-(x+2)^2.

So, if we subst. (x+2)=3siny," then, "dx=3cosydy.

:. I=intdx/(5-4x-x^2)^(5/2),

=int(3cosydy)/(9-9sin^2y)^(5/2),

=3/3^5int(cosydy)/cos^5y,

=1/81intdy/cos^4y,

=1/81intsec^2y*sec^2ydy,

=1/81int(tan^2y+1)sec^2ydy.

Now we subst. tany=t. :. sec^2ydy=dt.

:. I=1/81int(t^2+1)dt,

=1/81(t^3/3+t),

=t/243(t^2+3).

Since, t=tany, we get,

I=tany/243(tan^2y+3).

Now, (x+2)/3=siny.

:. cosy=sqrt{1-(x+2)^2/9}=1/3sqrt(5-4x-x^2).

:. tany=(x+2)/sqrt(5-4x-x^2).

Finally, I=1/243*(x+2)/sqrt(5-4x-x^2){((x+2)/sqrt(5-4x-x^2))^2+3}, i.e.,

I=((x+2)(19-8x-2x^2))/(243sqrt(5-4x-x^2))+C.