How do you integrate int4/(x^2 + 9)dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Sasha P. Sep 13, 2015 4/3arctan(x/3)+C Explanation: Let x=3t, then: dx=3dt, int4/(x^2+9)dx=int4/(9t^2+9)3dt=int4/9(t^2+1)3dt= =4/3intdt/(t^2+1)=4/3arctant+C=4/3arctan(x/3)+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 2554 views around the world You can reuse this answer Creative Commons License