Evaluate the integral int 1/(5+3cosx) dx ∫15+3cosxdx?
1 Answer
int \ 1/(5+3cosx) \ dx = 1/2 arctan(1/2 tan (x/2)) +C
Explanation:
We want to evaluate:
I = int \ 1/(5+3cosx) \ dx
If we use the trigonometry half angle tangent formula then we have:
cos alpha = (1-tan^2 (alpha/2)) / (1+tan^2 (alpha/2))
Let us perform the requested change of variable via the substation:
tan (x/2) = u
Differentiating wrt
(du)/dx = 1/2 sec^2(u/2)
" " = 1/2 (1+tan^2(u/2))
" " = 1/2 (1+u^2)
:. 2/(1+u^2) \ (du)/dx = 1
Then substituting into the integral, we get:
I = int \ 1/(5+3 \ (1-u^2) / (1+u^2)) \ 2/(1+u^2) \ du
\ \ = int \ 1/((5(1+u^2)+3(1-u^2))/(1+u^2)) \ 2/(1+u^2) \ du
\ \ = int \ (1+u^2)/(5+5u^2+3-3u^2) \ 2/(1+u^2) \ du
\ \ = int \ 2/(8+2u^2) \ du
\ \ = int \ 1/(2^2+u^2) \ du
The above is a standard integral than we can quote
I = 1/2 arctan(u/2) +C
Restoring the substitution we get:
I = 1/2 arctan((tan (x/2))/2) +C
\ \ = 1/2 arctan(1/2 tan (x/2)) +C