How do you find the antiderivative of y=csc(x)cot(x)y=csc(x)cot(x)?

1 Answer
Feb 27, 2015

We will use a u substitution

Start off by rewriting

int(1/sinx)(cosx/sinx)dx (1sinx)(cosxsinx)dx

intcosx/sin^2xdx cosxsin2xdx

Let u =sinx u=sinx

du=cosxdx du=cosxdx

Now make the substitution

int(du)/u^2=intu^-2du duu2=u2du

Integrating we get

-1/u 1u

Now back substitute for u

-1/sinx+C 1sinx+C

-cscx+C cscx+C