How do you find the integral of int x^3/(x^2+1)dxx3x2+1dx?

1 Answer
Dec 3, 2016

intx^3/(1+x^2)dx = 1/2x^2-lnsqrt(1+x^2)x31+x2dx=12x2ln1+x2

Explanation:

Substitute:

x=tantx=tant

dx = (dt)/cos^2tdx=dtcos2t

intx^3/(1+x^2)dx = int tan^3t/(1+tan^2t) dt/cos^2tx31+x2dx=tan3t1+tan2tdtcos2t

Use the trigonometric identity:

1+tan^2 t = 1/cos^2t1+tan2t=1cos2t

intx^3/(1+x^2)dx = int tan^3t/( 1/cos^2t) dt/cos^2t = int tan^3tdtx31+x2dx=tan3t1cos2tdtcos2t=tan3tdt

Using the same identity again:

int tan^3tdt = int tant tan^2t dt = int tant (1/cos^2t -1)dt =tan3tdt=tanttan2tdt=tant(1cos2t1)dt=

= int tant d(tant) - int tant dt =1/2 tan^2 t - int sint /cost dt ==tantd(tant)tantdt=12tan2tsintcostdt=

= 1/2tan^2t + int (d(cost))/cost = 1/2tan^2t + ln |cos t|=12tan2t+d(cost)cost=12tan2t+ln|cost|

To substitute back xx, we have that:

tant = xtant=x

cost= +-sqrt(1 /(1+tan^2t))= +-1/sqrt(1+x^2)cost=±11+tan2t=±11+x2

So:

intx^3/(1+x^2)dx = 1/2x^2-lnsqrt(1+x^2)x31+x2dx=12x2ln1+x2