How do you integrate int sqrt(x^2+4)x2+4 by trigonometric substitution?

1 Answer
Jul 23, 2016

= x/2 sqrt(x^2 + 4)+ 2 ln (1/2(x + sqrt(x^2 + 4))) + C=x2x2+4+2ln(12(x+x2+4))+C

Explanation:

we try a tan sub relying on the ID:

tan^2 psi + 1 = sec^2 psi quad star

so here let x^2 = 4 tan^2 z, x = 2 tan z, dx = 2 sec^2 z \ dz

the integration becomes

int sqrt(x^2+4) \ dx

= int sqrt(4 tan^2 z +4) \ 2 sec^2 z \ dz

= int 2 sec z \ 2 sec^2 z \ dz

I = 4 int sec^3 z \ dz qquad triangle

and maybe re-use that ID in star again....

= 4 int sec z ( tan^2 z + 1) \ dz

I = 4 int color{red}{tan^2 z sec z} + sec z \ dz qquad square

we can have a crack at the red bit using IBP

int tan^2 z sec z \ dz = int tan z (sec z tan z)\ dz

= int tan z d/dz (sec z) \ dz

by IBP

=sec z tan z - int d/dz (tan z) sec z \ dz

=sec z tan z - int sec^3 z \ dz

=sec z tan z - I/4 from triangle

so re-stating square

I = 4 int color{red}{tan^2 z sec z} \ dz + 4 int\ sec z \ dz

= 4(sec z tan z - I/4) + 4 int\ sec z \ dz

I = 2 sec z tan z+ 2 int\ sec z \ dz

and using the standard integral for sec z

I= 2 sec z tan z+ 2 ln (tan z + sec z) + C

recap
tan z = x/2
sec z = sqrt(x^2/4 + 1)

I = 2 x/2 sqrt(x^2/4 + 1)+ 2 ln (x/2 + sqrt(x^2/4 + 1)) + C

= x/2 sqrt(x^2 + 4)+ 2 ln (1/2(x + sqrt(x^2 + 4))) + C