How do you integrate int 1/sqrt(4x^2+16x) using trigonometric substitution?

1 Answer
Aug 22, 2016

Let I=int1/sqrt(4x^2+16x)dx=1/2int1/sqrt(x^2+4x)dx

Now, sqrt(x^2+4x)=sqrt(x^2+4x+4-4)=sqrt{(x+2)^2-2^2}.

We take substn. "(x+2)=2secy, so, dx=2secytanydy"

Also, sqrt(x^2+4x)=sqrt{4sec^2y-4}=sqrt(4tan^2y)=2tany.

Hence, I=1/2int(2secytany)/(2tany) dy=1/2intsecydy

=1/2ln|secy+tany|

=1/2ln|(x+2)/2+sqrt(x^2+4x)/2|+C

=1/2ln|(x+2+sqrt(x^2+4x))/2|+C

=1/2ln|x+2+sqrt(x^2+4x)|+C-1/2ln2

=1/2ln|x+2+sqrt(x^2+4x)|+K, "where", K=C-1/2ln2.

Enjoy Maths.!