How do you integrate ∫tan3(πx2)sec2(πx2)?
1 Answer
Nov 29, 2016
Explanation:
I=∫tan3(πx2)sec2(πx2)dx
We can first eliminate some ugliness by letting
I=2π∫tan3(πx2)sec2(πx2)(π2dx)
I=2π∫tan3(u)sec2(u)du
Notice that
I=2π∫v3dv
I=2πv44
I=v42π
I=tan4(u)2π
I=tan4(πx2)2π+C