How do you integrate int tan^3((pix)/2)sec^2((pix)/2)tan3(πx2)sec2(πx2)?

1 Answer
Nov 29, 2016

inttan^3((pix)/2)sec^2((pix)/2)dx=tan^4((pix)/2)/(2pi)+Ctan3(πx2)sec2(πx2)dx=tan4(πx2)2π+C

Explanation:

I=inttan^3((pix)/2)sec^2((pix)/2)dxI=tan3(πx2)sec2(πx2)dx

We can first eliminate some ugliness by letting u=(pix)/2u=πx2. Differentiating this gives du=pi/2dxdu=π2dx, so rearrange the integral as follows:

I=2/piinttan^3((pix)/2)sec^2((pix)/2)(pi/2dx)I=2πtan3(πx2)sec2(πx2)(π2dx)

I=2/piinttan^3(u)sec^2(u)duI=2πtan3(u)sec2(u)du

Notice that sec^2sec2 is the derivative of tantan, so let v=tan(u)v=tan(u) so dv=sec^2(u)dudv=sec2(u)du:

I=2/piintv^3dvI=2πv3dv

I=2/piv^4/4I=2πv44

I=(v^4)/(2pi)I=v42π

I=tan^4(u)/(2pi)I=tan4(u)2π

I=tan^4((pix)/2)/(2pi)+CI=tan4(πx2)2π+C