How do you integrate tan3(πx2)sec2(πx2)?

1 Answer
Nov 29, 2016

tan3(πx2)sec2(πx2)dx=tan4(πx2)2π+C

Explanation:

I=tan3(πx2)sec2(πx2)dx

We can first eliminate some ugliness by letting u=πx2. Differentiating this gives du=π2dx, so rearrange the integral as follows:

I=2πtan3(πx2)sec2(πx2)(π2dx)

I=2πtan3(u)sec2(u)du

Notice that sec2 is the derivative of tan, so let v=tan(u) so dv=sec2(u)du:

I=2πv3dv

I=2πv44

I=v42π

I=tan4(u)2π

I=tan4(πx2)2π+C