How do you integrate #int x^3 / ((sqrt(16+x^2))^3) dx# using trigonometric substitution?

1 Answer
Feb 25, 2016

#sqrt(16+x^2)+16/sqrt(16+x^2)#

Explanation:

Remember that
#tan^2 theta+1=sec^2 theta#

For the case is convenient that

#x=4tany#
#dx=4sec^2 y *dy#

Then

#int x^3/(sqrt(16+x^2))^3dx=int (64tan^3 y)/(sqrt(16+16tan^2 y))^3*4sec^2y* dy#
#=int (256 tan^3 y*sec^2 y)/(4sec y)^3dy=int (4 tan^3 y)/sec y dy#
#=4*int sin^3 y/cos^3 y*cos y*dy=4int sin y/cos^2 y*(1-cos^2 y) dy#
#=4int sin y/cos^2 y*dy-4int sin y*dy# [A]

#-> int sin y/cos^2 y*dy=#
Making #cos y=z# and #-sin y*dy=dz#
#=- int dz/z^2=1/z=1/cos y#

Inserting the result above in expression [A]:
#=4/cos y+4cos y +const.# [B]

But

#4tan y=x# => #siny=x/4*cos y#
#-> cos^2 y+sin^2 y = 1# => #cos^2 y+x^2/16*cos^2 y=1# => #(1+x^2/16)cos^2 y=1# => #cos y=sqrt(16/(16+x^2))=4/sqrt(16+x^2)#

Inserting the result above in expression [B]:

#=cancel(4)/(cancel(4)/sqrt(16+x^2))+4*4/sqrt(16+x^2)+const.#
#=sqrt(16+x^2)+16/sqrt(16+x^2)+const.#