How do you integrate int 2/(y^4sqrt(y^2-25) using trig substitutions?

1 Answer
Jan 13, 2017

(2sqrt(y^2 - 25))/(625y) - (2(y^2-25)^(3/2))/(1875y^3) + C

Explanation:

Our goal here is to get rid of the by making use of a pythagorean identity. Let y = 5sectheta. Then dy = 5secthetatanthetad theta.

=int 2/((5sectheta)^4sqrt((5sectheta)^2 - 25)) * 5secthetatanthetad theta

Apply the identity sec^2theta - 1 = tan^2theta:

=int 2/(625sec^4thetasqrt(25tan^2theta))* 5secthetatantheta d theta

=int 2/(625sec^4(5tantheta)) * 5secthetatantheta d theta

=int 2/(625sec^3theta) d theta

Rewrite using cosx = 1/secx

=int 2/625cos^3theta d theta

=int 2/625 cos^2theta(costheta) d theta

Rearrange using the pythagorean identity cos^2x + sin^2x = 1:

=int 2/625 (1 - sin^2theta)costheta d theta

Let u = sintheta. Then du = costheta d theta and d theta = (du)/costheta.

=int 2/625 (1 - u^2)costheta * (du)/costheta

=int 2/625( 1 - u^2) du

Integrate using intx^ndx = x^(n + 1)/(n + 1) where n != -1.

=2/625(u - 1/3u^3) + C

=2/625sintheta - 2/1875sin^3theta + C

Draw a triangle to represent y/5 = sectheta.

enter image source here

=2/625sqrt(y^2 - 25)/y - 2/1875(sqrt(y^2 - 25)/y)^3 + C

=(2sqrt(y^2 - 25))/(625y) - (2(y^2-25)^(3/2))/(1875y^3) + C

Hopefully this helps!