How do you evaluate the integral int dx/(x^3+x)?

1 Answer
Jan 8, 2017

int (dx)/(x^3+x) = 1/2 ln (x^2/(x^2+1))+C

Explanation:

We can write the integral as:

int (dx)/(x^3+x) = int (dx)/(x(1+x^2))

now we can substitute:

x=tant

dx= dt/cos^2t

so we have:

int (dx)/(x^3+x) = int (dt)/ (cos^2t tan t (1+tan^2t))

and using the trigonometric identity:

1+tan^2t = 1+sin^2t/cos^2t = (cos^2t+sin^2t)/cos^2t = 1/cos^2t

int (dx)/(x^3+x) = int (dt)/ (cos^2t tan t 1/cos^2t)=int (dt)/tant= int (costdt)/sint

We can see that: cost dt = d(sint), so:

int (dx)/(x^3+x) = int (dsint)/sint = ln abs sin t +C

To substitute back x we can note that:

x=tant = sint/sqrt(1-sin^2t)

x^2= sin^2t/(1-sin^2t)

x^2(1-sin^2t)= sin^2t

x^2-x^2sin^2t= sin^2t

x^2=x^2sin^2t+ sin^2t

x^2=(x^2+1)sin^2t

x^2/(x^2+1) = sin^2t

sqrt(x^2/(x^2+1)) = abs sint

so that finally:

int (dx)/(x^3+x) = ln sqrt(x^2/(x^2+1)) +C = 1/2 ln (x^2/(x^2+1))+C