How do you integrate int x/sqrt(x^2+1)xx2+1 by trigonometric substitution?

1 Answer
May 22, 2018

The answer is =sqrt(1+x^2)+C=1+x2+C

Explanation:

Let x=tanux=tanu

=>, dx=sec^2ududx=sec2udu

sqrt(x^2+1)=sqrt(1+tan^2u)=secux2+1=1+tan2u=secu

The integral is

I=int(xdx)/sqrt(x^2+1)=int(tanusec^2udu)/(secu)I=xdxx2+1=tanusec2udusecu

=inttanusecudu=tanusecudu

The derivative of secusecu is

=(1/cosu)'=-1/cos^2u*-sinu=tanusecu

Therefore,

The integral is

I=secu=sec(arctanx)=sqrt(1+x^2)+C