How do you integrate int (4x)/sqrt(x^2-14x+53)dx using trigonometric substitution?

1 Answer
Jan 20, 2018

The answer is =4sqrt(x^2-4x+53)+28ln((x-7)/2+sqrt(1+(x-7)^2/4))+C

Explanation:

Let's rewrite the function

(4x)/sqrt(x^2-14x+53)

=2((2x-14)/sqrt(x^2-14x+53))+2(14/sqrt(x^2-14x+53))

Therefore, there are 2 integrals

int(4xdx)/sqrt(x^2-14x+53)=2int(((2x-14)dx)/sqrt(x^2-14x+53))+2int((14dx)/sqrt(x^2-14x+53))

Perform the integrals separately,

2int(((2x-14)dx)/sqrt(x^2-14x+53))=4sqrt(x^2-4x+53)

2int((14dx)/sqrt(x^2-14x+53))=28int(dx)/sqrt(x^2-14x+53)

Complete the squares in the denominator

x^2-14x+53=x^2-14x+49+53-49=(x-7)^2+4=4(((x-7)/2)^2+1)

Let u=(x-7)/2, =>, du=dx/2

28int(dx)/sqrt(x^2-14x+53)=28int(dx)/(sqrt(4(((x-7)/2)^2+1)))

=14int(2du)/sqrt(u^2+1)

=28int(du)/(sqrt(u^2+1))

Let u=tantheta, =>, du=sec^2thetad theta

1+tan^2theta=sec^2theta

28int(du)/(sqrt(u^2+1))=28int(sec^2theta d theta)/(sectheta)

=28intsectheta d theta

=28ln(tan theta + sectheta)

=28ln(u+sqrt(1+u^2))

=28ln((x-7)/2+sqrt(1+(x-7)^2/4))

Finally,

int(4xdx)/sqrt(x^2-14x+53)=4sqrt(x^2-4x+53)+28ln((x-7)/2+sqrt(1+(x-7)^2/4))+C