How do you integrate int 1/sqrt(-e^(2x) +49)dx using trigonometric substitution?

1 Answer

color(blue)(int 1/sqrt(49-e^(2x))dx=1/7*ln(7-sqrt(49-e^(2x)))-1/7x+C)

Explanation:

The given int 1/sqrt(49-e^(2x))dx

Let e^x=7*sin theta
and e^(2x)=49*sin^2 theta
and e^x dx=7*cos theta*d theta
and dx=(7*cos theta*d theta)/e^x=(7*cos theta*d theta)/(7*sin theta)=(cos theta*d theta)/(sin theta)

Let us do the integration

int 1/sqrt(49-e^(2x))dx=int 1/sqrt(49-49*sin^2 theta)*(cos theta*d theta)/(sin theta)

int 1/sqrt(49-e^(2x))dx=int 1/(sqrt(49)sqrt(1-sin^2 theta))*(cos theta*d theta)/(sin theta)

int 1/sqrt(49-e^(2x))dx=int 1/(7*sqrt(cos^2 theta))*(cos theta*d theta)/(sin theta)

int 1/sqrt(49-e^(2x))dx=int 1/(7*cos theta)*(cos theta*d theta)/(sin theta)

int 1/sqrt(49-e^(2x))dx=int 1/(7*cancelcos theta)*(cancelcos theta*d theta)/(sin theta)

int 1/sqrt(49-e^(2x))dx=1/7*int (d theta)/(sin theta)=1/7*int csc theta*d theta

int 1/sqrt(49-e^(2x))dx=1/7*ln(csc theta-cot theta)+C

Now, we have to return it to the original variable x.

From our trigonometric substitution
e^x=7*sin theta

sin theta=e^x/7 and our Right Triangle has opposite side=e^x and hypotenuse=7 and adjacent side=sqrt(49-e^(2x))

Therefore,

csc theta=7/e^x and cot theta=(sqrt(49-e^(2x)))/e^x

And

int 1/sqrt(49-e^(2x))dx=1/7*ln(csc theta-cot theta)+C

int 1/sqrt(49-e^(2x))dx=1/7*ln(7/e^x-(sqrt(49-e^(2x)))/e^x)+C

int 1/sqrt(49-e^(2x))dx=1/7*ln((7-sqrt(49-e^(2x)))/e^x)+C

int 1/sqrt(49-e^(2x))dx=1/7*[ln(7-sqrt(49-e^(2x)))-ln e^x]+C

int 1/sqrt(49-e^(2x))dx=1/7*ln(7-sqrt(49-e^(2x)))-1/7x+C

God bless....I hope the explanation is useful.