How do you integrate #int (4x)/sqrt(-x^2-6x+75)dx# using trigonometric substitution?
1 Answer
I got:
#int (4x)/(sqrt(-x^2 - 6x + 75))dx#
#= -4sqrt(-x^2 - 6x + 75) - 12arcsin((x+3)/sqrt84) + C#
Usually by completing the square. Notice how we can add and subtract
#sqrt(-(x^2 + 6x + 9 - 9 - 75))#
#= sqrt(-((x+3)^2 - 84)) = sqrt(84 - (x+3)^2)#
Now, this is of the form
#a = sqrt84#
#x + 3 = asintheta = sqrt84 sintheta#
#d(x+3) = dx = sqrt84 costhetad theta#
#4x = 4sqrt84 sintheta - 12#
Therefore:
#=> sqrt(84 - (x+3)^2) = sqrt(84 - 84sin^2theta) = sqrt84 costheta# ,
and:
#int (4x)/(sqrt(-x^2 - 6x +75))dx#
#= int(4sqrt84 sintheta - 12)/cancel(sqrt84 costheta)cancel(sqrt84 costheta)d theta#
#= 4sqrt84 int sinthetad theta - 12int d theta#
From this point it is quite straightforward to obtain:
#= -4sqrt84 costheta - 12theta#
Almost there. Recall that
#theta = arcsin((x+3)/sqrt84)#
#costheta = sqrt(84 - (x+3)^2)/sqrt84 = sqrt(-x^2 - 6x + 75)/sqrt84#
Therefore, our answer becomes:
#=> -4cancel(sqrt84)(sqrt(-x^2 - 6x + 75))/cancel(sqrt84) - 12arcsin((x+3)/sqrt84)#
#= color(blue)(-4sqrt(-x^2 - 6x + 75) - 12arcsin((x+3)/sqrt84) + C)#