Here,
#I=int1/sqrt(x^2-6x+4)dx#
#I=int1/sqrt(x^2-6x+9-5)dx#
#I=int1/sqrt((x-3)^2-(sqrt5^2))dx#
Taking ,#x-3=sqrt5secu=>x=3+sqrt5secu#
#:.dx=sqrt5secutanudu#
So,
#I=int(sqrt5secutanu)/sqrt((sqrt5secu)^2-(sqrt5)^2)du#
#I=int(sqrt5secutanu)/(sqrt5sqrt(sec^2u-1))du#
#=int((secutanu)/tanu)du#
#=intsecudu#
#=ln|secu+tanu|+c#
#=ln|secu+sqrt(sec^2u-1)|+c#
#=ln|(x-3)/sqrt5+sqrt(((x-3)/sqrt5)^2-1)|+c#
#=ln|(x-3)/sqrt5+sqrt((x-3)^2-5)/sqrt5|+c#
#=ln|((x-3)+sqrt(x^2-6x+9-5))/sqrt5|+c#
#=ln|(x-3)+sqrt(x^2-6x+4)|-lnsqrt5+c#
#=ln|(x-3)+sqrt(x^2-6x+4)|+C,where,C=c-lnsqrt5#