Here,
I=int1/sqrt(x^2-6x+4)dx
I=int1/sqrt(x^2-6x+9-5)dx
I=int1/sqrt((x-3)^2-(sqrt5^2))dx
Taking ,x-3=sqrt5secu=>x=3+sqrt5secu
:.dx=sqrt5secutanudu
So,
I=int(sqrt5secutanu)/sqrt((sqrt5secu)^2-(sqrt5)^2)du
I=int(sqrt5secutanu)/(sqrt5sqrt(sec^2u-1))du
=int((secutanu)/tanu)du
=intsecudu
=ln|secu+tanu|+c
=ln|secu+sqrt(sec^2u-1)|+c
=ln|(x-3)/sqrt5+sqrt(((x-3)/sqrt5)^2-1)|+c
=ln|(x-3)/sqrt5+sqrt((x-3)^2-5)/sqrt5|+c
=ln|((x-3)+sqrt(x^2-6x+9-5))/sqrt5|+c
=ln|(x-3)+sqrt(x^2-6x+4)|-lnsqrt5+c
=ln|(x-3)+sqrt(x^2-6x+4)|+C,where,C=c-lnsqrt5