How do you integrate int x^3 sqrt(-x^2 + 8x-16)dx using trigonometric substitution?

1 Answer
Apr 22, 2018

See below

Explanation:

You don't need trigonometric substitution in this case. Note that

sqrt(-x^2+8x-16)=sqrt((-1)(x^2-8x+16))=sqrt(-1)sqrt(x^2-8x+16)=isqrt((x-4)^2)=i(x-4)

We use i as the imaginary unit i=sqrt(-1)

Now in the integral we have

intx^3·i·(x-4)dx=i·intx^3(x-4)dx=i·intx^4dx-4i·intx^3dx=

=i/5x^5-i·x^4+C