How do you integrate cscxcot^4xdx

1 Answer
May 4, 2015

intcsc(x)*cot^4(x)dx

Just trigonometric function : let's t = tan(1/2x)

csc(x) = (1+t^2)/(2t)

cot(x) = (1-t^2)/(2t)

dx = 2/(1+t^2)dt

So now we have :

int(1+t^2)/(2t)*((1-t^2)/(2t))^4*2/(1+t^2)dt

=> int 1/t*((1-t^2)/(2t))^4dt

Use the Binomial theorem

=>int1/t*(1-4t^2+6t^4-4t^6+t^8)/(16t^4)dt

=>1/16int(1-4t^2+6t^4-4t^6+t^8)/(t^5)dt

=>1/16int1/t^5-4/t^3+6/t-4t+t^3dt

=>1/16[-1/(4t^4)+2/t^2+6ln(|t|)-2t^2+1/4t^4]+C

And then substitute back for t = tan(1/2x)...