How do you evaluate the integral ∫dx(x+1)3?
1 Answer
Jan 15, 2017
Explanation:
Let
∫dx(x+1)3=∫duu3=∫u−3du
This can be integrated through the rule
∫dx(x+1)3=u−2−2+C=−12u2+C
Returning to the original variable
∫dx(x+1)3=−12(x+1)2+C