How do you integrate 1e2x2exdx using trigonometric substitution?

1 Answer
Feb 1, 2017

dxe2x2ex=12ex+C

Explanation:

Complete the square under the root:

1e2x2ex=1e2x2ex+11=1(ex1)21

Now substitute:

ex1=t

x=ln(1+t)

dx=dt1+t

We have:

dxe2x2ex=dx(ex1)21=dt(1+t)t21

Substitute again:

t=secu

dt=secutanudu

to have:

dt(1+t)t21=secutanudu(1+secu)sec2u1

Using the identity:

tan2u=sec2u1

this becomes:

secutanudu(1+secu)tan2u=secu1+secudu=1cosu11+1cosudu=du1+cosu

Use now:

cos2(u2)=1+cosu2

du1+cosu=12ducos2(u2)=d(u2)cos2(u2)=tan(u2)+C

To undo the substitutions, consider first the identity:

tan(u2)=1cosu1+cosu

and as cosu=1secu=1t:

tan(u2)= 11t1+1t=t1t+1=ex2ex=12ex

so that eventually:

dxe2x2ex=12ex+C