How do you integrate int sqrt(9-x^2) using trig substitutions?

2 Answers
Aug 1, 2016

=1/2[9sin^(-1)(x/3) + xsqrt(9-x^2)]+C

Explanation:

Let x = 3sin(u) implies dx = 3cos(u)du

x = 3sin(u) implies u = sin^(-1)(x/3)

int sqrt(9-x^2)dx = 3int sqrt(9 - 9sin^2(u))cos(u)du

= 9int sqrt(1-sin^2(u))cos(u)du = 3int sqrt(cos^2(u))cos(u)du

=9int cos^2(u)du

From double angle formula

cos2theta = 2cos^2theta - 1 implies cos^2theta = 1/2(1+cos2theta)

=9/2int (1 + cos(2u))du

= 9/2[u + 1/2sin(2u)] + C

Apply double angle formula:

=9/2[u + sin(u)cos(u)] + C

Rewrite cos(u) = sqrt(1-sin^2(u))

=9/2[u+sin(u)sqrt(1-sin^2(u))]+C

=9/2[sin^(-1)(x/3) + x/3sqrt(1-(x/3)^2)]+C

=9/2[sin^(-1)(x/3) + x/9sqrt(9-x^2)]+C

=1/2[9sin^(-1)(x/3) + xsqrt(9-x^2)]+C

Aug 1, 2016

9/2arcsin(x/3)+x/2sqrt(9-x^2)+C.

Explanation:

Let us subst. x=3sint, so, dx=3costdt

Also, sqrt(9-x^2)=sqrt(9-9sin^2t)=sqrt(9cos^2t)=3cost.

Hence, I=intsqrt(9-x^2)dx

=int3cost*3costdt=9intcos^2tdt=9/2int(1+cos2t)dt

=9/2{t+sin(2t)/2}=9/2{t+sintcost}

Here, x=3sint rArr t=arcsin(x/3).

Therefore, I=9/2{arcsin(x/3)+x/3*sqrt(9-x^2)/3}

=9/2arcsin(x/3)+x/2sqrt(9-x^2)+C.