How do you integrate int x^2/(a^2-x^2)^(3/2)x2(a2x2)32 by trigonometric substitution?

2 Answers
Apr 5, 2018

I=x/sqrt(a^2-x^2)-sin^-1(x/a)+cI=xa2x2sin1(xa)+c

Explanation:

Here,

I=intx^2/((a^2-x^2)^(3/2))dxI=x2(a2x2)32dx

Let ,x=asint=>dx=acostdtx=asintdx=acostdt

:.a^2-x^2=a^2-a^2sin^2t=a^2(1-sin^2t)=a^2cos^2t

So,

I=int(a^2sin^2t)/((a^2cos^2t)^(3/2))acostdt

=int(a^3sin^2tcost)/(a^3cos^3t)dt

=intsin^2t/cos^2tdt

=inttan^2tdt

=int(sec^2t-1)dt

=tant-t+c

=sint/cost-t+c

=sint/sqrt(1-sin^2t)-t+c

Now, x=asint=>sint=x/aand t=sin^-1(x/a)

Hence,

I=(x/a)/sqrt(1-(x^2/a^2))-sin^-1(x/a)+c

I=x/sqrt(a^2-x^2)-sin^-1(x/a)+c

Apr 5, 2018

x/(sqrt(a^2-x^2))-sin^(-1)(x/a)+c

Explanation:

intx^2/(a^2-x^2)^(3/2)dx

rewrite as follows

=int(x^2-a+a)/(a^2-x^2)^(3/2)dx

=color(red)(int(x^2-a^2)/(a^2-x^2)^(3/2)dx)+color(blue)(inta^2/(a^2-x^2)^(3/2)dx)---(1)

we will deal with each integral in turn, and leave the constant until the end

from (1)" " the red integral

color(red)(int(x^2-1)/(a^2-x^2)^(3/2)dx)

color(red)(I_1=-int(a^2-x^2)/(a^2-x^2)^(3/2)dx=-int1/(a^2-x^2)^(1/2)dx

we proceed by substitution

color(red)(x=asinu=>dx=acosudu)

:. color(red)(I_1=-int1/(cancel((a^2(1-sin^2x))^(1/2)))xx cancel(acosu)du

color(red)(I_1=-intdu

color(red)(I_1=-u=-sin^(-1)(x/a)---(2)

now take the second (blue )integral from #(2)" "~ and solve by substitution

color(blue)(I_2=inta^2/(a^2-x^2)^(3/2)dx

color(blue)(x=asinu=>dx=acosudu)

color(blue)(I_2=inta^2/((a^2(1-sin^2u))^(3/2)) xx a cosudu

which simplifies to

color(blue)(intdu/cos^2u=intsec^2udu=tanu

"now "sinu=x/a

:.tanu=(x/a)/(sqrt(a^2-x^2)/a)=x/(sqrt(a^2-x^2)

color(blue)(I_2=x/(sqrt(a^2-x^2))

the final integral becomes

x/(sqrt(a^2-x^2))-sin^(-1)(x/a)+c