intx^2/(a^2-x^2)^(3/2)dx
rewrite as follows
=int(x^2-a+a)/(a^2-x^2)^(3/2)dx
=color(red)(int(x^2-a^2)/(a^2-x^2)^(3/2)dx)+color(blue)(inta^2/(a^2-x^2)^(3/2)dx)---(1)
we will deal with each integral in turn, and leave the constant until the end
from (1)" " the red integral
color(red)(int(x^2-1)/(a^2-x^2)^(3/2)dx)
color(red)(I_1=-int(a^2-x^2)/(a^2-x^2)^(3/2)dx=-int1/(a^2-x^2)^(1/2)dx
we proceed by substitution
color(red)(x=asinu=>dx=acosudu)
:. color(red)(I_1=-int1/(cancel((a^2(1-sin^2x))^(1/2)))xx cancel(acosu)du
color(red)(I_1=-intdu
color(red)(I_1=-u=-sin^(-1)(x/a)---(2)
now take the second (blue )integral from #(2)" "~ and solve by substitution
color(blue)(I_2=inta^2/(a^2-x^2)^(3/2)dx
color(blue)(x=asinu=>dx=acosudu)
color(blue)(I_2=inta^2/((a^2(1-sin^2u))^(3/2)) xx a cosudu
which simplifies to
color(blue)(intdu/cos^2u=intsec^2udu=tanu
"now "sinu=x/a
:.tanu=(x/a)/(sqrt(a^2-x^2)/a)=x/(sqrt(a^2-x^2)
color(blue)(I_2=x/(sqrt(a^2-x^2))
the final integral becomes
x/(sqrt(a^2-x^2))-sin^(-1)(x/a)+c