How do you evaluate the integral: sqrt(x^2-a^2)/x dxx2a2xdx?

2 Answers
Apr 18, 2018

intsqrt(x^2-a^2)/xdx=sqrt(x^2-a^2)-asec^-1(x/a)+Cx2a2xdx=x2a2asec1(xa)+C

Explanation:

For the integral involving the root sqrt(x^2-a^2),x2a2, we use the substitution:

x=asecthetax=asecθ

dx=asecthetatanthetad thetadx=asecθtanθdθ

So, we get

int(cancelacancelsecthetatanthetasqrt(a^2(sec^2theta-1)))/(cancelacancelsectheta))d theta

Recalling the identity sec^2theta-1=tan^2theta, we get

intatanthetasqrt(tan^2theta)=intatan^2thetad theta

To integrate this, we'll use the identity tan^2theta=sec^2theta-1 again.

inta(sec^2theta-1)d theta=intasec^2thetad theta-intad theta=atantheta-atheta+C

We need to get things in terms of x. Recalling that x=asectheta, sectheta=x/a, theta=sec^-1(x/a)

To find the tangent, we'll use the identity

tan^2theta=sec^2theta-1

tan^2theta=x^2/a^2-1

tantheta=sqrt(x^2-a^2)/a

Thus,

intsqrt(x^2-a^2)/xdx=(asqrt(x^2-a^2))/a-asec^-1(x/a)+C

intsqrt(x^2-a^2)/xdx=sqrt(x^2-a^2)-asec^-1(x/a)+C

Apr 18, 2018

I=sqrt(x^2-a^2)-asec^-1(x/a)+c

Explanation:

Here,

I=intsqrt(x^2-a^2)/xdx

Let ,x=asecu=>dx=asecutanudu

and secu=x/a=>u=sec^-1(x/a)

:.I=intsqrt(a^2sec^2u-a^2)/cancel((asecu))(cancel(asecu)tanu)du

=intsqrt(a^2tan^2u)*tanudu

=int(atanu)*tanudu

=ainttan^2udu

=aint(sec^2u-1)du

=a(tanu-u)+c

=a(sqrt(sec^2u-1)-u)+c, where, secu=x/a,u=sec^-1(x/a)

=a[sqrt((x/a)^2-1)-sec^-1(x/a)]+c

=a[sqrt(x^2-a^2)/a-sec^-1(x/a)]+c

=sqrt(x^2-a^2)-asec^-1(x/a)+c