For the integral involving the root sqrt(x^2-a^2),√x2−a2, we use the substitution:
x=asecthetax=asecθ
dx=asecthetatanthetad thetadx=asecθtanθdθ
So, we get
int(cancelacancelsecthetatanthetasqrt(a^2(sec^2theta-1)))/(cancelacancelsectheta))d theta
Recalling the identity sec^2theta-1=tan^2theta, we get
intatanthetasqrt(tan^2theta)=intatan^2thetad theta
To integrate this, we'll use the identity tan^2theta=sec^2theta-1 again.
inta(sec^2theta-1)d theta=intasec^2thetad theta-intad theta=atantheta-atheta+C
We need to get things in terms of x. Recalling that x=asectheta, sectheta=x/a, theta=sec^-1(x/a)
To find the tangent, we'll use the identity
tan^2theta=sec^2theta-1
tan^2theta=x^2/a^2-1
tantheta=sqrt(x^2-a^2)/a
Thus,
intsqrt(x^2-a^2)/xdx=(asqrt(x^2-a^2))/a-asec^-1(x/a)+C
intsqrt(x^2-a^2)/xdx=sqrt(x^2-a^2)-asec^-1(x/a)+C