How do I evaluate inttan^3(x) sec^5(x)dx?

1 Answer
Feb 4, 2015

The answer is: 1/7cos^-7x-1/5cos^-5x+c

We can write this integral in this way:

int(sin^3x)/cos^3x*1/cos^5xdx=intsin^3x/cos^8xdx=

=int sin^2xsinxcos^-8xdx=int(1-cos^2x)sinxcos^-8xdx=

=intsinxcos^-8xdx-intsinxcos^-6xdx=

=-int-sinxcos^-8xdx+intsinxcos^-6xdx=

=-cos^(-8+1)x/(-8+1)+cos^(-6+1)x/(-6+1)+c=-cos^-7x/(-7)+cos^-5x/-5+c=

=1/7cos^-7x-1/5cos^-5x+c.

I have used the integral:

int[f(x)]^n*f'(x)dx=[f(x)]^(n+1)/(n+1)+c.