Use the identity sec^2u - 1 -= tan^2u.
Substitute x = 7secu.
For x>7, let 0<\u<\pi/2.
frac{dx}{du} = 7 secu tanu
int 1/sqrt{x^2 - 49} dx = int 1/sqrt{x^2 - 49} frac{dx}{du} du
= int 1/sqrt{(7secu)^2 - 49} (7 secu tanu) du
= int frac{7 secu tanu}{7sqrt{sec^2u - 1}} du
= int secu frac{tanu}{sqrt{tan^2u}} du
Since 0<\u<\pi/2, sqrt{tan^2u} -= tanu.
int secu frac{tanu}{sqrt{tan^2u}} du = int secu du
= ln|secu+tanu| + C_1, where C_1 is an integration constant.
= ln(secu+tanu) + C_1
= ln(7secu+7tanu) + C_2, where C_2=C_1-ln7.
= ln(x + sqrt{x^2 - 49}) + C_2
For x<-7, let pi/2<\u<\pi, then sqrt{tan^2u} -= -tanu.
int secu frac{tanu}{sqrt{tan^2u}} du = -int secu du
= -ln|secu+tanu| + C_3, where C_3 is an integration constant.
= -ln(-secu-tanu) + C_3
= -ln(-7secu-7tanu) + C_4, where C_4=C_3+ln7.
= -ln(-x+sqrt{x^2-49}) + C_4