How do you integrate int 1/sqrt(x^2-49)dx using trigonometric substitution?

1 Answer
Jan 4, 2016

For x>7,
int 1/sqrt{x^2 - 49} dx = ln(sqrt{x^2 - 49} + x) + C.

For x<-7,
int 1/sqrt{x^2 - 49} dx = -ln(sqrt{x^2 - 49} - x) + C.

Where C is the constant of integration.

Explanation:

Use the identity sec^2u - 1 -= tan^2u.

Substitute x = 7secu.

For x>7, let 0<\u<\pi/2.

frac{dx}{du} = 7 secu tanu

int 1/sqrt{x^2 - 49} dx = int 1/sqrt{x^2 - 49} frac{dx}{du} du

= int 1/sqrt{(7secu)^2 - 49} (7 secu tanu) du

= int frac{7 secu tanu}{7sqrt{sec^2u - 1}} du

= int secu frac{tanu}{sqrt{tan^2u}} du

Since 0<\u<\pi/2, sqrt{tan^2u} -= tanu.

int secu frac{tanu}{sqrt{tan^2u}} du = int secu du

= ln|secu+tanu| + C_1, where C_1 is an integration constant.

= ln(secu+tanu) + C_1

= ln(7secu+7tanu) + C_2, where C_2=C_1-ln7.

= ln(x + sqrt{x^2 - 49}) + C_2

For x<-7, let pi/2<\u<\pi, then sqrt{tan^2u} -= -tanu.

int secu frac{tanu}{sqrt{tan^2u}} du = -int secu du

= -ln|secu+tanu| + C_3, where C_3 is an integration constant.

= -ln(-secu-tanu) + C_3

= -ln(-7secu-7tanu) + C_4, where C_4=C_3+ln7.

= -ln(-x+sqrt{x^2-49}) + C_4