How do I evaluate intsqrt(4x^2-9)/xdx?

1 Answer
Jun 22, 2018

The answer is =sqrt(4x^2-9)-3arctan(1/3sqrt(4x^2-9))+C

Explanation:

Let u=sqrt(4x^2-9), then

du=(8xdx)/(2sqrt(4x^2-9))=(4xdx)/sqrt(4x^2-9)

The integral is

I=int(sqrt(4x^2-9)dx)/(x)

=int(dusqrt(4x^2-9)*sqrt(4x^2-x))/(4x*x)

=int(u^2du)/(u^2+9)

=int((u^2+9)du)/(u^2+9)-int(9du)/(u^2+9)

=intdu-9int(du)/(u^2+9)

=u-9int(du)/(u^2+9)

I_1-I_2

The second integral is

I_2=9int(du)/(u^2+9)

Let v=u/3, =>, dv=(du)/3

I_2=9int(3dv)/(9v^2+9)

=27/9int(dv)/(v^2+1)

=3arctan(v)

=3arctan(u/3)

Finally the integral is

I=u-3arctan(u/3)

=sqrt(4x^2-9)-3arctan(1/3sqrt(4x^2-9))+C