How do you integrate int cos^3xsin^4xdx?

1 Answer
Mar 5, 2017

The answer is ==(sin^5x)/5-(sin^7x)/7+C

Explanation:

We need

cos^2x=1-sin^2x

intx^ndx=x^(n+1)/(n+1)+C(n!=-1)

Therefore,

cos^3xsin^4x=cosxsin^4x(1-sin^2x)

We perform a substitution

Let u=sinx, =>, du=dxcosx

Therefore,

intcos^3xsin^4xdx=intcosxsin^4x(1-sin^2x)dx

=intu^4(1-u^2)du

=int(u^4-u^6)du

=u^5/5-u^7/7+C

=(sin^5x)/5-(sin^7x)/7+C