How do you integrate int x/sqrt(16-x^2) by trigonometric substitution?
1 Answer
Sep 10, 2016
Explanation:
Although this is well set up for a shorter, non-trigonometric substitution
Thus:
intx/sqrt(16-x^2)dx=int(4sintheta)/sqrt(16-16sin^2theta)(4costhetad theta)
Note that
=int(4sintheta)/(4costheta)(4costhetad theta)=4intsinthetad theta
Integrating sine gives:
=-4costheta+C
Write this in terms of sine:
=-4sqrt(1-sin^2theta)+C
Since
=-4sqrt(1-x^2/16)+C=-4sqrt((16-x^2)/16)+C
Bringing the
=-sqrt(16-x^2)+C