How do you integrate #int x/sqrt(16-x^2)# by trigonometric substitution?
1 Answer
Sep 10, 2016
Explanation:
Although this is well set up for a shorter, non-trigonometric substitution
Thus:
#intx/sqrt(16-x^2)dx=int(4sintheta)/sqrt(16-16sin^2theta)(4costhetad theta)#
Note that
#=int(4sintheta)/(4costheta)(4costhetad theta)=4intsinthetad theta#
Integrating sine gives:
#=-4costheta+C#
Write this in terms of sine:
#=-4sqrt(1-sin^2theta)+C#
Since
#=-4sqrt(1-x^2/16)+C=-4sqrt((16-x^2)/16)+C#
Bringing the
#=-sqrt(16-x^2)+C#