How do you integrate int x/sqrt(16-x^2) by trigonometric substitution?

1 Answer
Sep 10, 2016

-sqrt(16-x^2)+C

Explanation:

Although this is well set up for a shorter, non-trigonometric substitution (see: u=16-x^2), we can make the trigonometric substitution x=4sintheta. Note that this means that dx=4costhetad theta.

Thus:

intx/sqrt(16-x^2)dx=int(4sintheta)/sqrt(16-16sin^2theta)(4costhetad theta)

Note that sqrt(16-16sin^2theta)=4sqrt(1-sin^2theta)=4costheta.

=int(4sintheta)/(4costheta)(4costhetad theta)=4intsinthetad theta

Integrating sine gives:

=-4costheta+C

Write this in terms of sine:

=-4sqrt(1-sin^2theta)+C

Since sintheta=x/4:

=-4sqrt(1-x^2/16)+C=-4sqrt((16-x^2)/16)+C

Bringing the 1/16 from the square root as a 1/4:

=-sqrt(16-x^2)+C