How do you integrate #int x/sqrt(16-x^2)# by trigonometric substitution?

1 Answer
Sep 10, 2016

#-sqrt(16-x^2)+C#

Explanation:

Although this is well set up for a shorter, non-trigonometric substitution #(#see: #u=16-x^2)#, we can make the trigonometric substitution #x=4sintheta#. Note that this means that #dx=4costhetad theta#.

Thus:

#intx/sqrt(16-x^2)dx=int(4sintheta)/sqrt(16-16sin^2theta)(4costhetad theta)#

Note that #sqrt(16-16sin^2theta)=4sqrt(1-sin^2theta)=4costheta#.

#=int(4sintheta)/(4costheta)(4costhetad theta)=4intsinthetad theta#

Integrating sine gives:

#=-4costheta+C#

Write this in terms of sine:

#=-4sqrt(1-sin^2theta)+C#

Since #sintheta=x/4#:

#=-4sqrt(1-x^2/16)+C=-4sqrt((16-x^2)/16)+C#

Bringing the #1/16# from the square root as a #1/4#:

#=-sqrt(16-x^2)+C#