How do you integrate ∫x3√x2+9 using trig substitutions? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer A. S. Adikesavan Dec 17, 2016 =13√x2+9(x2−18)+C Explanation: Let t=x2+9. Then, dt=2xdx. Now, the given integral becomes 12∫t−9√tdt =12∫(t12−9t−12)dt =12(23t32−18t12)+C =13√t(t−27)+C =13√x2+9(x2−18)+C- Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 16621 views around the world You can reuse this answer Creative Commons License