What is int ( 2 + x ) / sqrt ( 4 - 2x - x^2 dx2+x42xx2dx?

1 Answer

int (2+x)/sqrt(4-2x-x^2)dx=arcsin ((x+1)/sqrt5)-sqrt(4-2x-x^2)+C2+x42xx2dx=arcsin(x+15)42xx2+C

Explanation:

Start from the given

int (2+x)/sqrt(4-2x-x^2)dx2+x42xx2dx

Start with Algebra by completing the square

4-2x-x^2=-(x^2+2x-4)=-(x^2+2x+1-1-4)42xx2=(x2+2x4)=(x2+2x+114)

and

4-2x-x^2=-((x+1)^2-5)=5-(x+1)^242xx2=((x+1)25)=5(x+1)2

then

int (2+x)/sqrt(4-2x-x^2)dx=int (2+x)/sqrt(5-(x+1)^2)dx2+x42xx2dx=2+x5(x+1)2dx

The Trigonometric Substitution

Let x+1=sqrt(5)*sin thetax+1=5sinθ
and x=sqrt(5)*sin theta -1x=5sinθ1
and dx=sqrt(5)*cos d thetadx=5cosdθ

Let's do the substitution

int (2+x)/sqrt(5-(x+1)^2)dx=2+x5(x+1)2dx=
int((sqrt(5)sin theta + 1)*(sqrt(5)*cos theta)d theta)/sqrt(5-(sqrt(5)*sin theta)^2)(5sinθ+1)(5cosθ)dθ5(5sinθ)2

int((sqrt(5)sin theta + 1)*(sqrt(5)*cos theta)d theta)/sqrt(5-5*sin^2 theta)(5sinθ+1)(5cosθ)dθ55sin2θ

continue simplification by trigonometric identities

int((sqrt(5)sin theta + 1)*(sqrt(5)*cos theta)d theta)/(sqrt5*sqrt(1-sin^2 theta))(5sinθ+1)(5cosθ)dθ51sin2θ

int((sqrt(5)sin theta + 1)*(sqrt(5)*cos theta)d theta)/(sqrt5*sqrt(cos^2 theta))(5sinθ+1)(5cosθ)dθ5cos2θ

int((sqrt(5)sin theta + 1)*(sqrt(5)*cos theta)d theta)/(sqrt5*cos theta)(5sinθ+1)(5cosθ)dθ5cosθ

int((sqrt(5)sin theta + 1)*(sqrt(5)*cos theta)d theta)/(sqrt5*cos theta)(5sinθ+1)(5cosθ)dθ5cosθ

and

int (2+x)/sqrt(5-(x+1)^2)dx=int(sqrt(5)sin theta + 1)d theta2+x5(x+1)2dx=(5sinθ+1)dθ

int (2+x)/sqrt(5-(x+1)^2)dx=int(1+sqrt(5)sin theta )d theta2+x5(x+1)2dx=(1+5sinθ)dθ

int (2+x)/sqrt(5-(x+1)^2)dx=theta-sqrt(5)*cos theta+C2+x5(x+1)2dx=θ5cosθ+C

Now, time to imagine your right triangle with
angle thetaθ
Let x+1x+1 the Opposite side to angle thetaθ
Let sqrt55 the Hypotenuse
Let sqrt(4-2x-x^2)42xx2 the Adjacent side to angle thetaθ

Return the variables

int (2+x)/sqrt(5-(x+1)^2)dx=theta-sqrt(5)*cos theta+C2+x5(x+1)2dx=θ5cosθ+C

int (2+x)/sqrt(5-(x+1)^2)dx=arcsin ((x+1)/(sqrt5))-sqrt(4-2x-x^2)+C2+x5(x+1)2dx=arcsin(x+15)42xx2+C

I hope the explanation is useful....God bless...