This is of the form:
sqrt(a^2 - x^2)√a2−x2
which looks like:
sqrt(1-1sin^2x) = cosx√1−1sin2x=cosx
So, let's do the following substitution. Let:
x = asinthetax=asinθ
dx = acosthetad thetadx=acosθdθ
where a = sqrt4 = 2a=√4=2
thus:
x^5 = 32sin^5thetax5=32sin5θ
sqrt(4-x^2) = sqrt(4-4sintheta) = 2costheta√4−x2=√4−4sinθ=2cosθ
dx = 2costhetad thetadx=2cosθdθ
int x^5sqrt(4-x^2)dx = int 32sin^5theta*4cos^2thetad theta∫x5√4−x2dx=∫32sin5θ⋅4cos2θdθ
= 128int sin^5thetacos^2thetad theta=128∫sin5θcos2θdθ
= 128int (sin^2theta)^2sinthetacos^2thetad theta=128∫(sin2θ)2sinθcos2θdθ
= 128int (1-cos^2theta)^2cos^2thetasinthetad theta=128∫(1−cos2θ)2cos2θsinθdθ
Now, let:
w = costhetaw=cosθ
dw = -sinthetad thetadw=−sinθdθ
We can then get:
= -128int (1-w^2)^2w^2dw=−128∫(1−w2)2w2dw
= -128int (1-2w^2 + w^4)w^2dw=−128∫(1−2w2+w4)w2dw
= -128int w^2-2w^4 + w^6dw=−128∫w2−2w4+w6dw
= -128[w^3/3-2/5w^5 + w^7/7]=−128[w33−25w5+w77]
Build a triangle; x/2 = sinthetax2=sinθ, so sqrt(4-x^2)/2 = costheta√4−x22=cosθ
Thus, we can re-substitute back in the previous values.
= -128/3cos^3theta + 256/5cos^5theta - 128/7cos^7theta=−1283cos3θ+2565cos5θ−1287cos7θ
= -cancel(128)^(16)/3(4-x^2)^(3/2)/cancel(8) + cancel(256)^8/5(4-x^2)^(5/2)/cancel(32) - cancel(128)/7(4-x^2)^(7/2)/cancel(128)
= -16/3(4-x^2)^(3/2) + 8/5(4-x^2)^(5/2) - 1/7(4-x^2)^(7/2) + C