This is of the form:
#sqrt(a^2 - x^2)#
which looks like:
#sqrt(1-1sin^2x) = cosx#
So, let's do the following substitution. Let:
#x = asintheta#
#dx = acosthetad theta#
where #a = sqrt4 = 2#
thus:
#x^5 = 32sin^5theta#
#sqrt(4-x^2) = sqrt(4-4sintheta) = 2costheta#
#dx = 2costhetad theta#
#int x^5sqrt(4-x^2)dx = int 32sin^5theta*4cos^2thetad theta#
#= 128int sin^5thetacos^2thetad theta#
#= 128int (sin^2theta)^2sinthetacos^2thetad theta#
#= 128int (1-cos^2theta)^2cos^2thetasinthetad theta#
Now, let:
#w = costheta#
#dw = -sinthetad theta#
We can then get:
#= -128int (1-w^2)^2w^2dw#
#= -128int (1-2w^2 + w^4)w^2dw#
#= -128int w^2-2w^4 + w^6dw#
#= -128[w^3/3-2/5w^5 + w^7/7]#
Build a triangle; #x/2 = sintheta#, so #sqrt(4-x^2)/2 = costheta#
Thus, we can re-substitute back in the previous values.
#= -128/3cos^3theta + 256/5cos^5theta - 128/7cos^7theta#
#= -cancel(128)^(16)/3(4-x^2)^(3/2)/cancel(8) + cancel(256)^8/5(4-x^2)^(5/2)/cancel(32) - cancel(128)/7(4-x^2)^(7/2)/cancel(128)#
#= -16/3(4-x^2)^(3/2) + 8/5(4-x^2)^(5/2) - 1/7(4-x^2)^(7/2) + C#