How do you integrate int 1/sqrt(4x^2+16x-5) using trigonometric substitution?

1 Answer
Jun 3, 2018

-1/8*ln|t-4|+C
where t=sqrt(4x^2+16x-5)-2x

Explanation:

Setting
sqrt(4x^2+16x-5)=2x+t
then we get (by squaring)

x=(5+t^2)/(16-4t)
dx=(-4t^2+32t+20)/(16-4t)^2dt
so

sqrt(4x^2+16x-5)=2(5+t^2)/(16-4t)+t=(-t^2+8t+5)/(8-2t)
and our integral will be

int (8-2t)/(-t^2+8t+5)*4(-t^2+8t+5)/(16-4t)^2dt

-1/8int dt/(t-4)=-1/8*ln|t-4|+C