How do you find 2x5x2+2x+2?

1 Answer
Nov 21, 2016

The answer is =ln(x2+2x+2)7arctan(x+1)+C

Explanation:

Let's rewrite

2x5x2+2x+2=2x+27x2+2x+2

=2x+2x2+2x+27x2+2x+2

Therefore, the integral is

(2x5)dxx2+2x+2=(2x+2)dxx2+2x+27dxx2+2x+2

So, we have 2 integrals

Let's do the first one,

Let u=x2+2x+2

Then du=(2x+2)dx

(2x+2)dxx2+2x+2=duu=lnu

=ln(x2+2x+2)

For the second integral,

x2+2x+2=x2+2x+1+1

=(x+1)2+1

Let u=x+1

du=dx

7dxx2+2x+2=7duu2+1

=7arctanu

=7arctan(x+1)

Finally, we have

(2x5)dxx2+2x+2=ln(x2+2x+2)7arctan(x+1)+C