How do you find ∫x−1√x2−2x?
1 Answer
Nov 10, 2016
Explanation:
I=∫x−1√x2−2xdx=12∫2x−2√x2−2xdx
Substituting
I=12∫du√u=12∫u−12du
With the rule
I=12u1212+C=u12+C=√u+C=√x2−2x+C
I=∫x−1√x2−2xdx=12∫2x−2√x2−2xdx
Substituting
I=12∫du√u=12∫u−12du
With the rule
I=12u1212+C=u12+C=√u+C=√x2−2x+C