How do you integrate ∫sec2(2x−1)?
1 Answer
Jan 10, 2017
Explanation:
Note that
Apply the substitution
∫sec2(2x−1)dx=12∫sec2(2x−1)(2dx)=12∫sec2(u)du
As we saw before,
∫sec2(2x−1)dx=12tan(u)+C
Returning to the original variable
∫sec2(2x−1)dx=12tan(2x−1)+C