Rewrite with the rational exponent converted to a root:
intdx/(sqrt((x^2+4)^3)∫dx√(x2+4)3
Let x=2tanthetax=2tanθ
dx=2sec^2thetad thetadx=2sec2θdθ
Rewrite:
int(2sec^2theta)/(sqrt((4tan^2theta+4)^3))d theta∫2sec2θ√(4tan2θ+4)3dθ
int(2sec^2theta)/(sqrt((4(tan^2theta+1))^3))d theta∫2sec2θ√(4(tan2θ+1))3dθ
Recall the identity
tan^2theta+1=sec^2thetatan2θ+1=sec2θ, and apply it:
int(2sec^2theta)/(sqrt(64(sec^2theta)^3))d theta∫2sec2θ√64(sec2θ)3dθ
1/4intsec^2theta/sqrt(sec^6theta)d theta14∫sec2θ√sec6θdθ
1/4intsec^2theta/sec^3thetad theta14∫sec2θsec3θdθ
1/4intcosthetad theta=1/4sintheta+C14∫cosθdθ=14sinθ+C
We want to rewrite in terms of x.x. Recalling that x=2tantheta, tantheta=x/2.x=2tanθ,tanθ=x2. If tantheta=x/2, sintheta=x/sqrt(x^2+4)tanθ=x2,sinθ=x√x2+4.
This could be deduced by drawing a right triangle with the sides opposite and adjacent to angle thetaθ being labeled x, 2x,2 (respectively), making the hypotenuse sqrt(x^2+4)√x2+4, and sintheta=(opposite)/(hypoten use)=x/sqrt(x^2+4)sinθ=oppositehypotenuse=x√x2+4
So,
intdx/(x^2+4)^(3/2)=1/4x/sqrt(x^2+4)+C∫dx(x2+4)32=14x√x2+4+C