How do you integrate int 1/(x^2+4)^(3/2)1(x2+4)32 by trigonometric substitution?

2 Answers
Apr 1, 2018

intdx/(x^2+4)^(3/2)=1/4x/sqrt(x^2+4)+Cdx(x2+4)32=14xx2+4+C

Explanation:

Rewrite with the rational exponent converted to a root:

intdx/(sqrt((x^2+4)^3)dx(x2+4)3

Let x=2tanthetax=2tanθ
dx=2sec^2thetad thetadx=2sec2θdθ

Rewrite:

int(2sec^2theta)/(sqrt((4tan^2theta+4)^3))d theta2sec2θ(4tan2θ+4)3dθ

int(2sec^2theta)/(sqrt((4(tan^2theta+1))^3))d theta2sec2θ(4(tan2θ+1))3dθ

Recall the identity

tan^2theta+1=sec^2thetatan2θ+1=sec2θ, and apply it:

int(2sec^2theta)/(sqrt(64(sec^2theta)^3))d theta2sec2θ64(sec2θ)3dθ

1/4intsec^2theta/sqrt(sec^6theta)d theta14sec2θsec6θdθ

1/4intsec^2theta/sec^3thetad theta14sec2θsec3θdθ

1/4intcosthetad theta=1/4sintheta+C14cosθdθ=14sinθ+C

We want to rewrite in terms of x.x. Recalling that x=2tantheta, tantheta=x/2.x=2tanθ,tanθ=x2. If tantheta=x/2, sintheta=x/sqrt(x^2+4)tanθ=x2,sinθ=xx2+4.

This could be deduced by drawing a right triangle with the sides opposite and adjacent to angle thetaθ being labeled x, 2x,2 (respectively), making the hypotenuse sqrt(x^2+4)x2+4, and sintheta=(opposite)/(hypoten use)=x/sqrt(x^2+4)sinθ=oppositehypotenuse=xx2+4

So,

intdx/(x^2+4)^(3/2)=1/4x/sqrt(x^2+4)+Cdx(x2+4)32=14xx2+4+C

Apr 1, 2018

I=1/4*x/sqrt(x^2+4)+cI=14xx2+4+c

Explanation:

Here,

I=int1/(x^2+4)^(3/2)dxI=1(x2+4)32dx

Let, x=2tanu=>dx=2sec^2udux=2tanudx=2sec2udu

andx^2+4=4tan^2u+4=4(tan^2u+1)=4sec^2uandx2+4=4tan2u+4=4(tan2u+1)=4sec2u

So,

I=int(2sec^2u)/((4sec^2u)^(3/2))du=int(2sec^2u)/(2secu)^3duI=2sec2u(4sec2u)32du=2sec2u(2secu)3du

=>I=int(2sec^2u)/(8sec^3u)duI=2sec2u8sec3udu

=>I=int1/(4secu)duI=14secudu

=>I=1/4intcosduI=14cosdu

=>I=1/4sinu+cI=14sinu+c

=>I=1/2(sinu/cosu)cosu+cI=12(sinucosu)cosu+c

=1/4tanu/secu+c=14tanusecu+c

=1/4tanu/sqrt(tan^2u+1)+c=14tanutan2u+1+c

=1/4(x/2)/sqrt((x^2/4)+1)+c=14x2(x24)+1+c

=1/4*x/sqrt(x^2+4)+c=14xx2+4+c