How do you integrate int sqrt(x^2-25)/x dxx225xdx using trigonometric substitution?

2 Answers
Jun 8, 2018

sqrt(x^2-25)-5arcsec(x/5)+C.x2255arcsec(x5)+C.

Explanation:

Suppose that, I=intcolor(red)sqrt(x^2-25)/color(green)xdxI=x225xdx, and, let, color(green)(x=5secu)x=5secu.

:. color(blue)(dx=5secutanudu).

:. I=intcolor(red)sqrt(25sec^2u-25)/color(green)(5secu)*color(blue)(5secutanudu),

=intcolor(red)(5tanu)*color(blue)(tanudu),

=5inttan^2udu,

=int(sec^2u-1)du,

=5(tanu-u).

Here, color(red)(5tanu=sqrt(x^2-25),) and, color(green)(x=5secu rArr u=arcsec(x/5).

rArr I=sqrt(x^2-25)-5arcsec(x/5)+C, as desired!

Enjoy Maths.!

Jun 8, 2018

Here is a Second Method to find the Integral.

Explanation:

Let, I=intsqrt(25-x^2)/xdx=intsqrt{(x^2-25)/x^2}dx.

:. I=intsqrt(1-(5/x)^2)dx.

We subst. 5/x=sint. :. sqrt(1-(5/x)^2)=cost.

"Also, "5/x=sint. :. x=5csct. :. dx=-5csctcottdt.

:. I=int(cost)(-5csctcott)dt,

=-5int{cost*1/sint*cost/sint}dt,

=-5intcot^2tdt,

=-5int(csc^2t-1)dt,

=-5(-cott-t),

=5{(cost/sint)+t},

=5{sqrt(1-(5/x)^2)/(5/x)+arcsin(5/x)}.

rArr I=sqrt(x^2-25)+5arcsin(5/x)+C.

I leave it to the Questioner to show that both the Answers are

equivalent!

Enjoy Maths.!