How do you integrate int tan^5(x/4)?
1 Answer
Given
Begin with a substitution for
u=x/4 => du=1/4dx => 4du=dx
We now have:
4inttan^5(u)du
Break up
4inttan^2(u)*tan^3(u)du
Use the trigonometric identity
4int(sec^2(u)-1)tan^3(u)du
Distribute
4intsec^2(u)tan^3(u)-tan^3(u)du
Split the integral:
4intsec^2(u)tan^3(u)du-4inttan^3(u)du
For the LH integral, we can perform a substitution:
4intsec^2(u)tan^3(u)du=>4intz^3dz
This is basic integral. We will now move on to the RHS.
4inttan^3(u)du
Break up
4inttan^2(u)*tan(u)du
Apply trigonometric identity
4int(sec^2(u)-1)tan(u)du
Distribute
4intsec^2(u)tan(u)-tan(u)du
Split the integral:
4intsec^2(u)tan(u)du-4inttan(u)du
For the LH integral, a substitution:
r=tan(u) => dr=sec^2(u)du
4intsec^2(u)tan(u)du=4intrdr
This is a basic integral, as is
We have:
4intz^3dz-[4intrdr-4inttan(u)du]
We integrate, then substitute back in for all of the variables.
4(1/4z^4)-[4(1/2r^2)-4ln|sec(u)|]+C