How do you integrate int tan^5(x/4)?

1 Answer
Mar 7, 2017

Given inttan^5(x/4)dx

Begin with a substitution for x/4:

u=x/4 => du=1/4dx => 4du=dx

We now have:

4inttan^5(u)du

Break up tan^5(u):

4inttan^2(u)*tan^3(u)du

Use the trigonometric identity tan^2(theta)=sec^2(theta)-1:

4int(sec^2(u)-1)tan^3(u)du

Distribute tan^3:

4intsec^2(u)tan^3(u)-tan^3(u)du

Split the integral:

4intsec^2(u)tan^3(u)du-4inttan^3(u)du

For the LH integral, we can perform a substitution:

z=tan(u) => dz=sec^2(u)du

4intsec^2(u)tan^3(u)du=>4intz^3dz

This is basic integral. We will now move on to the RHS.

4inttan^3(u)du

Break up tan^3(u):

4inttan^2(u)*tan(u)du

Apply trigonometric identity tan^2(theta)=sec^2(theta)-1:

4int(sec^2(u)-1)tan(u)du

Distribute tan(u):

4intsec^2(u)tan(u)-tan(u)du

Split the integral:

4intsec^2(u)tan(u)du-4inttan(u)du

For the LH integral, a substitution:

r=tan(u) => dr=sec^2(u)du

4intsec^2(u)tan(u)du=4intrdr

This is a basic integral, as is 4inttan(u)du.

We have:

4intz^3dz-[4intrdr-4inttan(u)du]

We integrate, then substitute back in for all of the variables.

4(1/4z^4)-[4(1/2r^2)-4ln|sec(u)|]+C

=>tan^4(u)-2tan^(u)+4ln|sec(u)|+C

=>tan^4(x/4)-2tan^2(x/4)+4ln|sec(x/4)|+C