How do you find the integral of tt4+16?

1 Answer
Feb 9, 2017

The answer is =18arctan(t24)+C

Explanation:

We perform this integral by substitution

Let u=t24

du=24tdt=t2dt

t4+16=16u2+16=16(u2+1)

Therefore,

tdtt4+16=2du16(u2+1)

=18duu2+1

Let u=tanθ

du=sec2θdθ

1+tan2θ=sec2θ

So,

18duu2+1=18sec2θdθsec2θ

=18dθ=θ8

=18arctan(u)

Therefore,

tdtt4+16=18arctan(t24)+C