How do you find the integral of sqrt (2x - x^2) dx?

2 Answers
Jul 4, 2018

The answer is =1/2arcsin(x-1)+1/2(x-1)sqrt(2x-x^2)+C

Explanation:

2x-x^2=1-(x-1)^2 by completing the square.

Therefore, the integral is

I=intsqrt(2x-x^2)dx=intsqrt(1-(x-1)^2)dx

Let u=x-1, =>, du=dx

I=intsqrt(1-u^2)du

Let u=sintheta, =>, du=costhetad theta

sqrt(1-u^2)=sqrt(1-sin^2theta)=costheta

I=intcostheta*costhetad theta=intcos^2theta d theta

cos2theta=2cos^2theta-1

=>, cos^2theta=(1+cos2theta)/2

Therefore,

I=1/2int(1+cos2theta)d theta

=1/2(theta+1/2sin2theta)

=1/2theta+1/4sin2theta

=1/2theta+1/2sinthetacostheta

=1/2arcsin(u)+1/2usqrt(1-u^2)

=1/2arcsin(x-1)+1/2(x-1)sqrt(1-(x-1)^2)+C

=1/2arcsin(x-1)+1/2(x-1)sqrt(2x-x^2)+C

Jul 4, 2018

arcsinsqrt(x/2)-1/2(1-x)sqrt(2x-x^2)+C.

Explanation:

Here is Second Method :

Let, x=2sin^2u. :. dx=2*2sinu*cosudu.

:. intsqrt(2x-x^2)dx,

=intsqrt(4sin^2u-4sin^4u)(4sinucosu)du,

=4intsqrt{4sin^2u(1-sin^2u)}sinucosudu,

=4int(2sinucosu)sinucosudu,

=2int(4sin^2ucos^2u)du,

=2intsin^2 2udu,

=2int(1-cos4u)/2du,

=u-1/4sin4u,

=u-1/4*2sin2ucos2u,

=u-1/2(2sinucosu)(1-2sin^2u),

=u-sqrt{sin^2ucos^2u}(1-2sin^2u),

=u-sqrt{sin^2u(1-sin^2u)}(1-2sin^2u).

Since, x=2sin^2u, sinu=sqrt(x/2). :. u=arcsinsqrt(x/2).

rArr intsqrt(2x-x^2)dx,

=arcsinsqrt(x/2)-sqrt{x/2(1-x/2)}(1-x),

=arcsinsqrt(x/2)-1/2(1-x)sqrt(2x-x^2)+C.

Enjoy Maths.!