How do you integrate int sin^2(2x)dxsin2(2x)dx?

1 Answer
Mar 15, 2017

1/8(4-sin(4x))+C18(4sin(4x))+C

Explanation:

Use the cosine double-angle identity to rewrite the function:

cos(2alpha)=1-2sin^2(alpha)" "=>" "sin^2(alpha)=(1-cos(2alpha))/2cos(2α)=12sin2(α) sin2(α)=1cos(2α)2

Then:

sin^2(2x)=(1-cos(4x))/2sin2(2x)=1cos(4x)2

So:

intsin^2(2x)dx=1/2int(1-cos(4x))dx=1/2intdx-1/2intcos(4x)dxsin2(2x)dx=12(1cos(4x))dx=12dx12cos(4x)dx

The second can be solved with the substitution u=4x=>du=4dxu=4xdu=4dx:

intsin^2(2x)dx=1/2x-1/8int4cos(4x)dx=1/2x-1/8intcos(u)dusin2(2x)dx=12x184cos(4x)dx=12x18cos(u)du

The integral of cosine is sine:

intsin^2(2x)dx=1/2-1/8sin(u)=1/8(4-sin(u))=1/8(4-sin(4x))+Csin2(2x)dx=1218sin(u)=18(4sin(u))=18(4sin(4x))+C