Use the cosine double-angle identity to rewrite the function:
cos(2alpha)=1-2sin^2(alpha)" "=>" "sin^2(alpha)=(1-cos(2alpha))/2cos(2α)=1−2sin2(α) ⇒ sin2(α)=1−cos(2α)2
Then:
sin^2(2x)=(1-cos(4x))/2sin2(2x)=1−cos(4x)2
So:
intsin^2(2x)dx=1/2int(1-cos(4x))dx=1/2intdx-1/2intcos(4x)dx∫sin2(2x)dx=12∫(1−cos(4x))dx=12∫dx−12∫cos(4x)dx
The second can be solved with the substitution u=4x=>du=4dxu=4x⇒du=4dx:
intsin^2(2x)dx=1/2x-1/8int4cos(4x)dx=1/2x-1/8intcos(u)du∫sin2(2x)dx=12x−18∫4cos(4x)dx=12x−18∫cos(u)du
The integral of cosine is sine:
intsin^2(2x)dx=1/2-1/8sin(u)=1/8(4-sin(u))=1/8(4-sin(4x))+C∫sin2(2x)dx=12−18sin(u)=18(4−sin(u))=18(4−sin(4x))+C