∫x2√4x+25dx
Letx=52tanA,dx=(52sec2a)dA
=∫x2√4x+25dx=∫(52)2tan2Asec2A√4(52)2tan2A+25dA
=∫x2√4x+25dx=∫(52)2tan2Asec2A√25tan2A+25dA
=∫x2√4x+25dx=∫(52)2tan2Asec2A5(√tan2A+1)dA
sec2A−1=tan2A
=∫(54)tan2Asec2A√sec2AdA
=∫(54)(sec2A−1)sec2A√sec2AdA
=∫(54)((sec3A−secA))dA
=(54)(∫(sec3A)−∫(secA))dA -------- equation (1)
We need to find
∫(secA) dA = ∫secAsecA+tanAsecA+tanAdA
=∫secAsec2A+tanAsecAsecA+tanAdA
Let B=secA+tanA
dB=(secAtanA+sec2A) dA
=∫1BdB
=ln|B|+c
=ln|secA+tanA|+c -----equation 2
We now need to find
∫(sec3A) dA
Integrate by parts
∫sec2AsecA dA
Let C=secA
dC=secAtanAdA
dD=sec2A dA
D=∫sec2A dA =tanA+const
Using by parts gives
=∫sec2AsecA dA =CD−∫DdC/dA
=secAtanA−∫secAtanAtanA dA
=secAtanA−∫(sec2A−1)secA dA
=secAtanA−∫(sec3A−secA) dA
∫sec3AsecA dA=secAtanA−(∫sec3A−∫secA) dA
substituting using equation 2
2∫sec3A dA = secAtanA+ln∣secA+tanA)
12(secAtanA+ln∣secA+tanA)) ----equation 3
From equation 1 we had
∫x2√4x+25dx =(54)(∫(sec3A)−∫(secA))dA
using the results from equations 2 and 3
=54((12(secAtanA+ln|(secA+tanA)|))−ln|(secA+tanA)|)
=58(secAtanA+−ln|(secA+tanA)|))
Now convert everything back to x
x=52tanA, tanA=25x, tan2A=(25)2x2
sec2A=tan2A+1=4x2+2525
secA==√4x2+2525=√4x+255
120(√4x+25)x−58ln(√(4x+25)5+25x)