How do you integrate x24x2+25dx using trigonometric substitution?

1 Answer
Mar 27, 2018

120(4x+25)x58ln(4x+255+25x)

Explanation:

x24x+25dx

Letx=52tanA,dx=(52sec2a)dA

=x24x+25dx=(52)2tan2Asec2A4(52)2tan2A+25dA

=x24x+25dx=(52)2tan2Asec2A25tan2A+25dA

=x24x+25dx=(52)2tan2Asec2A5(tan2A+1)dA

sec2A1=tan2A

=(54)tan2Asec2Asec2AdA

=(54)(sec2A1)sec2Asec2AdA
=(54)((sec3AsecA))dA
=(54)((sec3A)(secA))dA -------- equation (1)

We need to find

(secA) dA = secAsecA+tanAsecA+tanAdA

=secAsec2A+tanAsecAsecA+tanAdA

Let B=secA+tanA
dB=(secAtanA+sec2A) dA
=1BdB
=ln|B|+c
=ln|secA+tanA|+c -----equation 2

We now need to find

(sec3A) dA

Integrate by parts

sec2AsecA dA
Let C=secA
dC=secAtanAdA

dD=sec2A dA
D=sec2A dA =tanA+const

Using by parts gives
=sec2AsecA dA =CDDdC/dA
=secAtanAsecAtanAtanA dA
=secAtanA(sec2A1)secA dA
=secAtanA(sec3AsecA) dA
sec3AsecA dA=secAtanA(sec3AsecA) dA

substituting using equation 2
2sec3A dA = secAtanA+lnsecA+tanA)
12(secAtanA+lnsecA+tanA)) ----equation 3

From equation 1 we had

x24x+25dx =(54)((sec3A)(secA))dA

using the results from equations 2 and 3

=54((12(secAtanA+ln|(secA+tanA)|))ln|(secA+tanA)|)
=58(secAtanA+ln|(secA+tanA)|))

Now convert everything back to x
x=52tanA, tanA=25x, tan2A=(25)2x2
sec2A=tan2A+1=4x2+2525
secA==4x2+2525=4x+255

120(4x+25)x58ln((4x+25)5+25x)