How do you integrate (sqrt(12+4x^2)dx?

1 Answer
Feb 24, 2015

The answer is: xsqrt(x^2+3)+3arc sinh(x/sqrt3)+c.

The integral can be written:

intsqrt(4(3+x^2))dx=2intsqrt(3+x^2)dx=(1)

Since:

x=sqrt3sinhtrArrdx=sqrt3coshtdt, than:

(1)=2intsqrt(3+3sinh^2t)*sqrt3coshtdt=

=2intsqrt3sqrt(1+sinh^2t)sqrt3coshtdt=6intcosht*coshtdt=

=6intcosh^2tdt=(2).

Now remembering that:

cosh(alpha/2)=sqrt((coshalpha+1)/2),

(2)=6int(cosh2t+1)/2dt=6/2(1/2int2cosh2t+intdt)=

=3(1/2sinh2t+t)+c=(3)

And now, remembering that:

sinh2alpha=2sinhalphacoshalpha and
coshalpha=sqrt(sinh^2alpha+1),

than:

(3)=3(1/2 2sinhtcosht+t)=

=3(x/sqrt3sqrt(x^2/3+1)+arc sinh(x/sqrt3))+c=

=3(x/sqrt3sqrt(x^2+3)/sqrt3+arc sinh(x/sqrt3))+c=

=xsqrt(x^2+3)+3arc sinh(x/sqrt3)+c.