How do you integrate #(sqrt(12+4x^2)dx#?

1 Answer
Feb 24, 2015

The answer is: #xsqrt(x^2+3)+3arc sinh(x/sqrt3)+c#.

The integral can be written:

#intsqrt(4(3+x^2))dx=2intsqrt(3+x^2)dx=(1)#

Since:

#x=sqrt3sinhtrArrdx=sqrt3coshtdt#, than:

#(1)=2intsqrt(3+3sinh^2t)*sqrt3coshtdt=#

#=2intsqrt3sqrt(1+sinh^2t)sqrt3coshtdt=6intcosht*coshtdt=#

#=6intcosh^2tdt=(2)#.

Now remembering that:

#cosh(alpha/2)=sqrt((coshalpha+1)/2)#,

#(2)=6int(cosh2t+1)/2dt=6/2(1/2int2cosh2t+intdt)=#

#=3(1/2sinh2t+t)+c=(3)#

And now, remembering that:

#sinh2alpha=2sinhalphacoshalpha# and
#coshalpha=sqrt(sinh^2alpha+1)#,

than:

#(3)=3(1/2 2sinhtcosht+t)=#

#=3(x/sqrt3sqrt(x^2/3+1)+arc sinh(x/sqrt3))+c=#

#=3(x/sqrt3sqrt(x^2+3)/sqrt3+arc sinh(x/sqrt3))+c=#

#=xsqrt(x^2+3)+3arc sinh(x/sqrt3)+c#.