How do you integrate int sqrt(9-x^2)dx using trigonometric substitution?

1 Answer
May 26, 2018

1/2*x*sqrt(9-x^2)+9/2*arcsin(1/3*x)+C

Explanation:

Substituting
x=3sin(t)
dx=3cos(t)dt
so we get
9intsqrt(1-sin^2(t))cos(t)dt
and we get
9intcos^2(t)dt
With 1/2*(cos(2t)+1)=cos^2(t)
we get
9/2int(cos(2t)+1)dt
This is
9/2(sin(2t)/2+t)+C
Backsubstitution gives
1/2xsqrt(9-x^2)+9/2arcsin(1/3x)+C